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Organocatalytic activation of TMSCN by basic ammonium
salts for efficient cyanation of aldehydes and imines
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Abstract—Basic ammonium salts act as highly effective catalysts for the cyanosilylation of aldehydes and in Strecker-type amino-
nitrile synthesis using TMSCN as cyanide source at 25 �C under extremely mild conditions, affording very good to excellent yields of
silylated cyanohydrins and a-aminonitriles.
� 2007 Published by Elsevier Ltd.
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Hydrocyanation and cyanosilylation of aldehydes are
important C–C bond-forming reactions1 in organic syn-
thesis, as they provide versatile intermediates such as
cyanohydrins and cyanohydrin silyl ethers, respectively.
In particular, cyanohydrin silyl ethers 2 are industrially
valuable and important intermediates for the synthesis
of a-hydroxy acids and esters, acyloins, vicinal diols,
b-amino alcohols and other biologically active com-
pounds.2 They are generally prepared by the addition
of trimethylsilyl cyanide (TMSCN), a safe and easily
handled reagent compared to HCN or KCN,3 to car-
bonyl compounds in the presence of Lewis acids,4 Lewis
bases,5 metal alkoxides,6 bifunctional catalysts7 and
inorganic salts.8 However, many of these methods suffer
from several disadvantages such as prolonged reaction
times, use of heavy metal catalysts and poor yields of
the corresponding cyanotrimethylsilyl ethers. Our
particular interest in this transformation stems from
the fact that metal-free organocatalysis for the cyana-
tion of aldehydes and imines with TMSCN should lead
to efficient syntheses of cyanotrimethyl silyl ethers
without any metal contamination. In this regard, we
screened several Lewis bases such as DBU (1,8-diazabi-
cyclo[5.4.0]undec-7-ene), DABCO (1,4-diazabi-
cyclo[2.2.2]octane), or (�)-sparteine, in catalytic
amounts, for the cyanation of 4-nitro- and 4-cyanobenz-
aldehydes and unexpectedly observed the formation of
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new products, that is, their respective methyl esters 1 in-
stead of the cyanohydrins, when the reaction was carried
out in methanol (Scheme 1). This observation led us to
modify the Lewis basicity in DBU by quaternizing one
of the nitrogen atoms with benzyl bromide. Thus, qua-
ternary basic ammonium salt 4 was prepared and, when
employed for this transformation, gave exclusively cya-
nohydrin silyl ether 2. Similarly, ammonium salts 3
and 5 were prepared from the corresponding diamines
by quaternizing with benzyl bromide and methyl iodide,
respectively, in toluene as solvent. Organocatalysts 3
(mp: 259 �C), 4 (mp: 169 �C) and 5 (mp: 201 �C) were
characterized by 1H, 13C NMR and IR spectroscopy
and by single crystal XRD and elemental analysis.
Figure 2 shows the ORTEP diagram of catalyst 4 where
quaternization with benzyl bromide occurred at the
imine nitrogen atom.9
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Scheme 1. Base catalyzed reaction of 4-nitrobenzaldehyde with
TMSCN.
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Table 1. Organocatalytic reaction of 4-nitrobenzaldehyde with
TMSCN: screening of basesa

Entry Base Solvent Product (% yield)b

1 2

1 DBU MeOH 93, 87c —
c
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In this Letter, we report a new high-yielding proce-
dure for the synthesis of trimethylsilyl cyanides 2 and
a-aminonitriles 6 catalyzed by monoquaternized bases
3, 4 and 5 (Fig. 1) under ambient conditions. A system-
atic study on the hydrocyanation of 4-nitrobenzalde-
hyde as a test substrate in various solvents was carried
out using catalytic amount of either diamines or their
ammonium salts 3, 4 and 5 and the results are summa-
rized in Table 1. Ammonium salt 4 was found to be
the best catalyst for the hydrocyanation of 4-nitrobenz-
aldehyde with TMSCN as cyanide source. Encouraged
by this result, a wide range of aldehydes were subjected
to cyanosilylation using a catalytic quantity of 4
(0.5 mol %) under optimized reaction conditions
(1 equiv of TMSCN, 25 �C, CH2Cl2). Table 2 shows
the scope of the reaction wherein moderate to high
yields of 2 were obtained in all the cases studied. For
aromatic substrates with electron-donating substituents,
the reaction time was longer giving moderate yields of 2.
Notably, the cyanosilylation of (E)-cinnamaldehyde
afforded the corresponding 1,2-addition product exclu-
sively (entry i). However, the reaction failed in the case
of ketones, probably due to steric reasons.

The Strecker reaction between an aldehyde, an amine
and hydrogen cyanide is widely regarded as the first
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Figure 1. Quaternized organocatalysts for TMSCN addition to
aldehydes and imines.

Figure 2. ORTEP diagram of catalyst 4.
multi-component reaction.10 a-Aminonitriles 6 are the
precursors for several amino acids and also for popular
bifunctional synthons that have found numerous syn-
thetic applications.11 We have extended the present
catalytic system to Strecker-type a-aminonitrile synthe-
sis, the results of which are presented in Table 3. After
initial experimentation, again catalyst 414 was found to
be the most effective for the three-component reaction.
Many aldehydes possessing both electron-donating as
well as electron-withdrawing groups underwent this con-
densation to afford the corresponding a-aminonitriles 6
in good yields. However, both the cyanosilylation and
Strecker reaction failed to give optical induction when
chiral catalyst 5 was employed, only racemic products
2 and 6 were produced.

Scheme 2 shows a possible mechanistic pathway in
which activation of the silyl group in TMSCN by cata-
lyst 4 leads to the formation of ion-pair 7. Reaction of
2 DABCO MeOH 92, 78 —
3 Et3N MeOH 81 —
4 3 MeOH — 57
5 4 CH2Cl2 — 92
6 4 MeOH — 64
7 5 MeOH — 61

a Reagents and conditions: 4-nitrobenzaldehyde (5.0 mmol), TMSCN
(6.0 mmol), base (0.5 mol %), solvent, 25 �C, 3 h.

b Isolated yield after column chromatographic purification.
c Yield corresponds to 4-cyanomethylbenzoate when 4-cyanobenz-

aldehyde was used.



Table 2. Cyanosilylation of various aldehydes using organocatalyst 4a

TMSCN, 4 (0.5 mol%)

CH2Cl2, 25 °C R CN

OTMS

2a-l

RCHO

Entry R T (h) Yieldb (%)

a C6H5 24 51
b 4-MeOC6H4 24 52
c 4-MeC6H4 24 62
d 4-HOC6H4 24 57
e 4-FC6H4 10 73
f 4-NCC6H4 3 72, 53c, 58d

g 4-O2NC6H4 3 92
h Ph(CH2)2 10 80
i Ph–CH@CH 10 60
j BnO(CH2)4 10 83
k BnO(CH2)5 10 81
l (CH3)2CH 10 90

a Reagents and conditions: aldehyde (5.0 mmol), TMSCN (6.0 mmol),
organocatalyst 4 (0.5 mol %), CH2Cl2, 25 �C.

b Isolated yield after column chromatographic purification.
c % Yield when catalyst 3 was used.
d % Yield when catalyst 5 was used.

Table 3. Strecker-type a-aminonitrile synthesis using 4 as catalyst and
TMSCN as cyanide sourcea

R CN

NHPMP

4 (0.5 mol%), TMSCN
RCHO

CH2Cl2, 25 oC, 12 h

p-anisidine,MgSO4

6

Entry R Yield (%)b

1 C6H5 77
2 4-MeOC6H4 79
3 3,4-(MeO)2C6H3 67
4 Ph(CH2)2 81
5 4-O2NC6H4 81
6 4-ClC6H4 69
7 3-O2NC6H4 72
8 3,4-Methylenedioxyphenyl 68
9 CH3–(CH2)3 73

10 CH3–(CH2)3 83c

11 CH3–(CH2)3 90d

a Reagents and conditions: aldehyde (5.0 mmol), TMSCN (6.0 mmol),
p-anisidine (5.0 mmol), 4 (0.5 mol %), anhyd MgSO4, CH2Cl2
(25 mL), 25 �C, 12 h.

b Isolated yield after column chromatographic purification.
c Yield when morpholine was used as the amine source.
d Yield when n-butylamine was used as the amine source.
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Scheme 2. Possible pathway for the cyanosilylation of aldehydes.
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7 with aldehydes gives intermediate 8, which subse-
quently dissociates into silylated cyanohydrin 2 with
the regeneration of catalyst 4.

In conclusion, we have shown, for the first time, the use
of ammonium salts as new Lewis base catalysts for
cyanosilylation of aldehydes and the three-component
Strecker- type a-aminonitrile synthesis under ambient
conditions.12,13 Both the methods are effective and uti-
lize the readily available cyanide source TMSCN. These
catalysts have also shown advantages in terms of chemi-
cal stability and high solubility in organic solvents.
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